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Introduction: Planetary scientists who use reflec-
tance and thermal emission spectroscopy are spoiled
by the availability, breadth, and sophistication of un-
mixing software and spectral libraries available for
commonly used techniques. Many techniques for ex-
tracting quantitative abundances of minerals from visi-
ble through mid-infrared (and thermal emission) spec-
tra of mineral mixtures are available [1-3]. However,
there is no analogous methodology for mineral unmix-
ing for the technique of Raman spectroscopy because
most development work has been focused on micro-
Raman techniques [4] that probe pure minerals. Be-
cause the beam sizes of the Raman instruments on Su-
perCam (~1.3 mm) [5] and SHERLOC (50 um) [6] on
Mars 2020 are larger than most expected grain sizes on
Mars, it is likely that their Raman spectra will contain
mixtures of mineral signatures. Other impending pos-
sible uses of Raman spectroscopy, such as on Europa
and Venus landers, may also face this issue. An infu-
sion of work is needed to support these instruments.

Three interrelated areas of research are reported
here: 1) integration and review of new and existing
mineral databases of well-characterized mineral sam-
ples, 2) acquisition of quantitative data to assess the
relationship between Raman peak intensity and miner-
al abundance, and 3) development of mineral identifi-
cation software with quantified accuracy.

Databases: The importance of robust Raman data-
bases of appropriate well-characterized minerals can-
not be overstated. In addition, spectra of single crystals
may not be appropriate for identification (or quantifi-
cation) of fine grained mineral mixtures and/or pow-
ders. Raman spectral data for powders and mixtures of
minerals are nearly nonexistent and, while work has
already begun to remedy this [7], the necessary in-
vestment of time and effort needed is significant.

While a number of public/internet Raman spectral
databases exist, the largest, by far, is the RRUFF spec-
tral database (http://rruff.info) created by Bob Downs
and the University of Arizona mineralogy group
through the support of both private donors and federal
research grants [8,9]. While every spectrum in these
databases has scientific value, not every spectrum
meets the criteria to be included in a reference dataset
for mineral identification [10]. These criteria include:
1. Use only spectra from verified samples — ideally

with both structure and chemistry verified.
2. Strong, clear spectra are preferred, so a minimum

S/N ratio must be set.
3. Use spectra that are free of artifacts — for Raman

the concern is features due to photo-fluorescence.
Because many of the >4000 known mineral species are
truly rare, an effective reference database for petro-
logic mineral identification also needs to contain flags
to distinguish rock-forming minerals from rare ones,
while still maintaining thorough coverage of rock-
forming minerals. To this end, we are assembling and
reviewing publicly-available Raman data from RRUFF
and other on-line datasets to filter out weaker (low
S/N) spectra, those contaminated by fluorescence, and
from unverified samples. We are also evaluating gaps
in the resulting dataset that are relevant to rock-
forming and planetary minerals. We are obtaining Ra-
man spectra on well-characterized samples in order to
fill those gaps. Particularly important are pyroxenes
and olivines. We plan to acquire data on samples syn-
thesized by Don Lindsley at Stony Brook University
that span the Ca-Fe-Mg pyroxene quadrilateral and the
fayalite-forsterite solid solution series.

Finally, because fluorescence peaks are often not
inherent characteristics of the individual minerals and
have the potential to confuse matching algorithms, we
plan to study mineral fluorescence under experimental
conditions relevant to Raman spectrometry. Although
the use of time-resolved Raman in some planetary mis-
sions will exclude fluorescence effects, nearly all exist-
ing spectral libraries (to which they will be compared)
contain data with this problem.

To address the lack of data on fine-grained miner-
als, we plan to collect data on a petrologically relevant
subset of >10,000 powdered minerals available in our
laboratory as funding allows. We are also creating fi-
ne-grained mixtures of mineral and glass phases for
Raman testing, including 256 binary mineral mixtures
described in [11,12] and 140 glass-mineral mixtures
designed to test detection limits.

Understanding Raman Peak Intensities: It is
well-known that experimental factors affect Raman
peak intensities (and thus mineral identification). Spec-
tra of the same mineral species in existing datasets
show variations in peak presence/absence and relative
intensity. These can result from sample factors (grain
size, transparency, crystallographic orientation, grain
surface/boundary effects [4]), instrument factors (laser
wavelength, power, and spot size, spectrometer aper-
tures, gratings, and detectors), experimental factors
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(angle of incidence and takeoff and the use/absence of
polarizers) and data gathering factors (integration time,
averaging, method/frequency of calibration). Some
differences in peak intensities can be mitigated through
pre-processing steps such as normalization, smoothing,
and squashing [13,14]. We are also working on a cali-
bration transfer methodology that will correct for many
of these instrumental and experimental factors [15].

Raman cross-section of minerals is the primary
species-specific intensity factor; it arises primarily
from variations in bond polarizability in mineral struc-
tures. Mineral-specific proportionality factors (compa-
rable to optical constants used to relate peak intensities
to mineral abundances) of common rock-forming min-
erals are needed. These can be determined from calcu-
lations of remote Raman efficiency based on laborato-
ry measurements [16] or by comparing peak intensities
of minerals mixed with known amounts of a standard
such as diamond [12]. Of these, the latter is more gen-
erally useful and easier to implement in practice. We
plan to acquire those data in our laboratory for hun-
dreds of mineral species before the Mars 2020 landing.

Matching and Unmixing of Raman Data: Tradi-
tional Raman matching software packages, including
the CrystalSleuth program [17], have been found to
have limited accuracy, especially at the species level.
However, machine learning techniques using automat-
ed whole spectrum matching (AWSM) [14] dramati-
cally improve matching accuracy for Raman spectra of
pure minerals. For example, a weighted-neighbor co-
sine similarity classifier [13] achieved 97.8% group-
level and 89.2% species-level accuracy on average for
a subset of RRUFF data, far outperforming existing
methods for matching.

Moving forward, unmixing approaches that build
on techniques currently used for FTIR should provide
a starting point for Raman theoretical umixing models.
Raman features arise from scattering of energy while
FTIR spectra have absorption features. Raman pro-
vides information on covalency of molecular bonds,
while FTIR indicates ionic character. Raman peaks
reflect changes in bond polarization, while FTIR peaks
record dipole changes. These commonalities suggest
the potential of future unmixing algorithms to assist
with interpretation of Raman data, but that promise is
years away from becoming a reality.

As an alternative, our AWSM algorithms are now
being adapted for the purpose of mineral unmixing.
However, determining the components is one problem,
but quantifying them is another. Consider the mixtures
of minerals in known proportions shown in Figure 1.
These are Raman data of three mixtures, all with 20
volume% gypsum and 80 volume % of another com-
mon phase (forsterite, siderite, or labradorite). In these
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Figure 1. Mixtures of 20% gypsum with 80 vol-
ume% of other phases (pyroxene, carbonate, and
feldspar). Note the large variations in the intensities
of the gypsum peak ca. 1010 cm™ despite its constant
modal abundance.

mixtures, the amount of gypsum is identical but the
magnitudes of the gypsum peaks are highly variable.
This is emblematic of problems to be faced in quanti-
fying mineral abundances using Raman spectra. We
expect that Raman proportionality factors measured
against our diamond internal standard will provide an
empirical solution for this challenge.

Resources: Current models for Raman mineral
matching and unmixing of up to three components [18]
are available on our web site for beta-testing at
http://nemo.cs.umass.edu:54321/. Ongoing develop-
ment work and new data will be posted there for inter-
ested users. Please contact the first author for full site
access.
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